Práctico 7

Primer Cuatrimestre — 2024, FaMAF - UNC

Funciones exponencial y logaritmo en base a. Dado a > 1, la función exponencial $E_a : \mathbb{R} \to \mathbb{R}_{>0}$ dada por $E_a(x) := a^x$ es estrictamente creciente, tiene inversa estrictamente creciente $\log_a : \mathbb{R}_{>0} \to \mathbb{R}$, y cumplen:

$$a^{0} = 1$$

$$a^{x+y} = a^{x} \cdot a^{y}$$

$$\lim_{x \to -\infty} a^{x} = 0$$

$$\log_{a}(x \cdot y) = \log_{a}(x) + \log_{a}(y)$$

$$E'_{a}(x) = \frac{1}{\log_{a} e} \cdot a^{x}$$

$$a^{1} = a$$

$$a^{x \cdot y} = (a^{x})^{y}$$

$$\lim_{x \to \infty} a^{x} = \infty$$

$$\log_{a}(x^{y}) = y \cdot \log_{a}(x)$$

$$\log'_{a}(x) = (\log_{a} e) \cdot \frac{1}{x},$$

donde e es la constante 2,71828 Al logaritmo en base e lo escribimos ln, de manera que

$$\frac{d}{dx}e^x = e^x \qquad \qquad \ln'(x) = \frac{1}{x}.$$

1. Determinar los siguientes límites.

(a)
$$\lim_{x \to 2} \frac{x - 2}{x^2 - 4}$$
.
(b) $\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{\pi - 2x}$.
(c) $\lim_{x \to 0} \frac{x}{\tan x}$.
(d) $\lim_{x \to 0} \sec(x)x^{-3}$.
(e) $\lim_{x \to 0} \frac{x}{\sin \sqrt{x}}$.
(f) $\lim_{x \to 0} \frac{\arcsin x}{\sin x}$.
(g) $\lim_{x \to 1} \frac{x^3 + x - 2}{x^2 - 3x + 2}$.
(h) $\lim_{x \to \infty} \frac{2 - x}{x^3 - 1}$.
(i) $\lim_{x \to 0} x^x$.

2. Para cada una de las siguientes funciones, determinar si existen, máximos y mínimos, locales y globales ("absolutos"), en el conjunto A.

(a)
$$f(x) = x^3 + x$$
, $A = [-1, 2]$.
(b) $f(x) = x^3 - x^2 - 8x + 1$, $A = [-2, 2]$.
(c) $f(x) = 2 - |x + 1|$, $A = (-2, 1]$.
(d) $f(x) = \frac{1}{x^2 - 1}$, $A = (-1, 1)$.
(e) $f(x) = \frac{x}{x + 1}$, $A = \mathbb{R}$.
(f) $f(x) = \operatorname{sen}(x) + \cos(x)$, $A = [0, \frac{7\pi}{15}]$.

3. Sea $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ dada por $f(x) := x^x$.

(a) Determinar su derivada (Ayuda: expresarla usando la función exponencial de base e y ln).

(b) ¿Es (de)creciente? Si no, determinar dónde lo es.

(c) Demostrar que f tiene un mínimo global y hallarlo.

4. Determinar los pares de números cuya suma sea 100 y cuyo producto sea máximo.

5. Demostrar que, para cualquier $m \in \mathbb{R}$, el polinomio $p(x) = x^3 - 3x + m$ no posee dos raíces distintas en el intervalo [0,1].

6. Para cada uno de las siguientes funciones verificar el Teorema del Valor Medio, encontrando explícitamente el valor de c.

Primer Cuatrimestre — 2024, FaMAF - UNC

(a)
$$f(x) = \frac{1}{x}$$
 en $[1, 2]$. (b) $f(x) = 1 + \sqrt[3]{x+1}$ en $[2, 9]$.

7. Sea $f(x) = \frac{x+1}{x-1}$. Demostrar que no hay un valor c tal que

$$\frac{f(2) - f(0)}{2 - 0} = f'(c).$$

¿Por qué esto no contradice el Teorema del Valor Medio?

8. Determinar los intervalos de crecimiento y decrecimiento, valores máximos y/o mínimos, los intervalos de concavidad, y los puntos de inflexión de las siguientes funciones y graficar.

(a)
$$f(x) = x^{2/3}$$
. (c) $f(x) = \frac{x}{(x-1)^2}$. (e) $f(x) = \sqrt{\frac{x}{x+5}}$.

(b)
$$f(x) = x^3 - 3x^2 + 3$$
. (d) $f(x) = x - \frac{1}{x}$. (f) $f(x) = \frac{1}{(x-1)(x-2)}$.

- 9. Para cada inciso, trazar la gráfica de una $f: \mathbb{R} \to \mathbb{R}$ que satisfaga todas las condiciones.
 - (a) f'(-1) = 0, f no es derivable en x = 1, y f'(x) < 0 para |x| < 1.
 - (b) f'(x) > 0 para |x| > 1, f(-1) = 4, f(1) = 0, f''(x) < 0 si x < 0, y f''(x) > 0 si x > 0.
- 10. Graficar las siguientes funciones.

(a)
$$f(x) = \frac{1}{3+x^2}$$
. (c) $f(x) = \frac{1}{x^2+3x+5}$. (d) $f(x) = x + \frac{1}{x}$.

(b)
$$f(x) = \frac{x}{x^2 + 2}$$
.

(e)
$$f(x) = x^2(x-2)^2$$

- **11.** Si $a_1 < a_2 < \cdots < a_n \ (n > 1)$, probar que $f(x) = \sum_{i=1}^n (x a_i)^2$ tiene valor mínimo y hallarlo.
- **12.** Sea f una función n veces derivable en todo \mathbb{R} , tal que $f(x_1) = f(x_2) = \cdots = f(x_{n+1}) = 0$ para $x_1 < x_2 < \ldots < x_{n+1}$. Demostrar que existe $y_0 \in \mathbb{R}$ tal que $f^{(n)}(y_0) = 0$.
- 13. Sean f y g dos veces derivables. Probar que si f es creciente y f y g son convexas, entonces $f \circ g$ es convexa.

Diremos que F es una primitiva (o antiderivada) de f en el intervalo I si $\forall x \in I$, F'(x) = f(x).

- 14. Demostrar que si F_1 y F_2 son primitivas de f en I, entonces $F_1 F_2$ es constante.
- **15.** Probar que si F es primitiva de f y $a \in \mathbb{R}$, entonces $G(x) := F(a \cdot x)$ es primitiva de $g(x) := a \cdot f(a \cdot x)$.
- **16.** Dado $n \in \mathbb{N}$, hallar todas las funciones f tales que $f'(x) = x^n$.
- 17. Hallar una función f tal que $f'(x) = a \cdot f(x)$ para todo $x \in \mathbb{R}$. (Ayuda: hacer el caso a = 1 primero).

EJERCICIOS EXTRA

- 18. (a) Demostrar que entre todos los rectángulos que tienen determinado perímetro, el cuadrado tiene área máxima.
 - (b) Encontrar las dimensiones de un triángulo isósceles de área maximal que se pueda inscribir en un círculo de radio r.

19. Determinar los intervalos de crecimiento y decrecimiento, valores máximos y/o mínimos, intervalos de concavidad, abscisas de puntos de inflexión de las siguientes funciones y graficar.

(a)
$$f(x) = 2x^3 + 5x^2 - 4x$$
. (d) $f(x) = x^{\frac{1}{3}}(x+3)^{\frac{2}{3}}$. (g) $f(x) = \sqrt{\frac{x}{x-5}}$.

(b)
$$f(x) = (x^2 - 1)^3$$
. (e) $f(x) = x^4 - x^3$. (h) $f(x) = x + 3x^{\frac{2}{3}}$.

(a)
$$f(x) = 2x^3 + 5x^2 - 4x$$
. (d) $f(x) = x^{\frac{1}{3}}(x+3)^{\frac{2}{3}}$. (e) $f(x) = (x^2 - 1)^3$. (e) $f(x) = x^4 - x^3$. (h) $f(x) = x + 3x^{\frac{2}{3}}$. (c) $f(x) = 2x^3 - 6x^2 - 18x$. (f) $f(x) = x\sqrt{x^2 - 9}$. (i) $f(x) = \frac{x^3}{x^2 - 1}$.

- **20.** ¿Para qué valores de c tiene $p(x) = x^4 + cx^3 + x^2$, dos puntos de inflexión, uno y ninguno? Ilustre graficando p(x) con varios valores de c. ¿Cómo cambia la gráfica cuando disminuye c?
- **21.** Sean $f, g: I \to \mathbb{R}$ derivables en todo punto del intervalo abierto I, y sea $a \in I$.
 - (a) Si f'(x) > g'(x) para todo $x \in I$, y f(a) = g(a), demostrar que f(x) > g(x) para todo x > a y que f(x) < g(x) para todo x < a.
 - (b) Demostrar que no se cumple lo enunciado en (a) si no se supone f(a) = g(a).
 - (c) Demostrar que $2\sqrt{x} > 3 \frac{1}{x}$ cuando x > 1.
- **22.** Dado p(x) un polinomio se dice que a es raíz de orden n si $p(x) = (x-a)^n q(x)$ para q(x)algún polinomio con $q(a) \neq 0$.
 - (a) Probar que a es raíz de orden 2 de p(x) si y sólo si p(a) = p'(a) = 0 y $p''(a) \neq 0$.
 - (b) Enunciar una generalización del resultado en (a) para raíces de orden n arbitrario.
 - (c) ¿Cuándo $p(x) = ax^2 + bx + c$ tiene una raíz doble, para $a \neq 0$?
- **23.** Demostrar que si $f(x) := a \cos x + b \sin x$, entonces f''(x) + f(x) = 0 para todo $x \in \mathbb{R}$.
- **24.** Supongamos que f satisface f''(x) + f(x) = 0 para todo $x \in \mathbb{R}$, f(0) = a y f'(0) = b.
 - (a) Probar que función $h(x) := f(x) (a\cos x + b\sin x)$ cumple con h''(x) + h(x) = 0 para todo $x \in \mathbb{R}$, h(0) = 0 y h'(0) = 0.
 - (b) Probar que $\Phi(x) := h(x)^2 + h'(x)^2$ es constante e igual a 0 (Ayuda: derivar).
 - (c) Concluir que h(x) es constante e igual a 0 y luego f debe tener la forma dada por el Ejercicio 23. (Ayuda: Φ es suma de dos cuadrados).