Teorema (Colapso de Mostowski Generalizado). Asumiendo anti-fundación:

- (1) Para todo grafo G mal fundado, $d_G[G]$ es un conjunto transitivo mal fundado.
- (2) Sea A un conjunto. Luego, A es mal fundado si y solo si existe un grafo \mathbf{G} y existe un nodo $x \in G$ tal que $A = d_{\mathbf{G}}(x)$ y $(x \downarrow_{\mathbf{G}}^*, \rightarrow^{\mathbf{G}} \upharpoonright x \downarrow_{\mathbf{G}}^*)$ es mal fundado.

Demostración.

(1): Sea $A = d_{\mathbf{G}}[G]$ y sean a, b conjuntos tales que $b \in a \in A$. Luego, existe $x \in G$ tal que $a = d_{\mathbf{G}}(x)$ y existe $y \leftarrow^{\mathbf{G}} x$ tal que $b = d_{\mathbf{G}}(y)$. Finalmente, A es transitivo.

Por otro lado, como \mathbf{G} es mal fundado, existe $X \subseteq G$ tal que $X \neq \emptyset$ y, para todo $x \in X$, existe $y_x \in X$ tal que $y_x \leftarrow^{\mathbf{G}} x$. Sea $B = d_{\mathbf{G}}[X]$. Luego, para todo $a \in B$, existe $x \in X$ tal que $a = d_{\mathbf{G}}(x)$. Además, como $y_x \leftarrow^{\mathbf{G}} x$, se tiene que $d_{\mathbf{G}}(y_x) \in d_{\mathbf{G}}(x)$. Y como $y_x \in X$, se tiene que $d_{\mathbf{G}}(y_x) \in B$. Por lo tanto, para todo $a \in B$, existe $b \in B$ tal que $b \in a$. Finalmente, como $\operatorname{trcl}(A) = A$, A es mal fundado.

(2): Para la ida, suponer que A es mal fundado. Sea $\mathbf{G} = (\operatorname{trcl}(\{A\}), \ni)$ y sea $\mathbf{H} = (A \downarrow_{\mathbf{G}}^*, \ni \upharpoonright A \downarrow_{\mathbf{G}}^*)$. Luego, \mathbf{H} es mal fundado. Notar que, para todo $a \in \operatorname{trcl}(\{A\}), a = \{b : b \in a\}$. Luego, f(x) = x es un decorador de \mathbf{G} . Finalmente, $d_{\mathbf{G}}(A) = A$.

Para la vuelta, sea **G** un grafo y sea $x \in G$ tal que $A = d_{\mathbf{G}}(x)$ y, además, $\mathbf{H} = (x \downarrow_{\mathbf{G}}^*, \to^{\mathbf{G}} \upharpoonright x \downarrow_{\mathbf{G}}^*)$ sea mal fundado. Luego, existe $Y \subseteq H$ tal que, para todo $y \in Y$, existe $z_y \in Y$ tal que $z_y \leftarrow^{\mathbf{G}} y$. Se desea ver que $d_{\mathbf{G}}[Y] \subseteq \operatorname{trcl}(A)$. Sea $y \in Y$. Luego, $y \in x \downarrow_{\mathbf{G}}^*$, i.e., $y \leftarrow^{\mathbf{G}^*} x$. Si $y \leftarrow^{\mathbf{G}} x$, entonces se tiene que

Sea $y \in Y$. Luego, $y \in x \downarrow_{\mathbf{G}}^*$, i.e., $y \leftarrow^{\mathbf{G}^*} x$. Si $y \leftarrow^{\mathbf{G}} x$, entonces se tiene que $d_{\mathbf{G}}(y) \in d_{\mathbf{G}}(x) = A \subseteq \operatorname{trcl}(A)$. Suponer en cambio que $y \leftarrow^{\mathbf{G}} z \leftarrow^{\mathbf{G}^*} x$. Luego, por hipótesis inductiva, $d_{\mathbf{G}}(z) \in \operatorname{trcl}(A)$. Finalmente, como $d_{\mathbf{G}}(y) \in d_{\mathbf{G}}(z)$, se concluye que $d_{\mathbf{G}}(y) \in \operatorname{trcl}(A)$.

Para concluir, notar que, para todo $y \in Y$, $d_{\mathbf{G}}(z_y) \in d_{\mathbf{G}}(y)$ y $z_y \in Y$. Finalmente, $\operatorname{trcl}(A)$ no está bien ordenado por \in , y A no es bien fundado.