Formalization of Forcing in Isabelle/ZF

E. Gunther M. Pagano P. Sánchez Terraf¹

CIEM-FaMAF — Universidad Nacional de Córdoba

International Joint Conference on Automated Reasoning Paris (Virtual), 2020 / 07 / 02

¹Supported by CONICET and SeCyT-UNC

1 Introduction

- Why Isabelle/ZF?
- The ctm approach to forcing
- Other approaches

2 The development

- What did we accomplish?
- Math vs Code

3 Looking forward

Pros

- Most advanced set theory formalized (around 2017).
- Structured proof language Isar [Wenzel, 1999].
- Comparatively low in consistency strength.

Pros

- Most advanced set theory formalized (around 2017).
- Structured proof language Isar [Wenzel, 1999].
- Comparatively low in consistency strength.

Cons

- A fraction of automation of Isabelle (sledgehammer, etc).
- "Untyped", and too weak a metatheory.

- An object logic of Isabelle axiomatized over the intuitionistic fragment Pure of higher order logic.
- It postulates two types: i (sets) and o (booleans).

- An object logic of Isabelle axiomatized over the intuitionistic fragment Pure of higher order logic.
- It postulates two types: i (sets) and o (booleans).
- The Replacement and Separation axiom schemes feature free high order variables.

- An object logic of Isabelle axiomatized over the intuitionistic fragment Pure of higher order logic.
- It postulates two types: i (sets) and o (booleans). Not inductively defined!
- The Replacement and Separation axiom schemes feature free high order variables.
- Induction/recursion is *internal* to the theory (it works as a layer on top of set-theoretical proofs of well-foundedness— of N, of Ord, etc).

Countable transitive model (ctm) of ZF

 $\langle M, E \rangle \models ZF$ where

- *M* is standard: $E := \in \upharpoonright M$.
- *M* is countable, and *transitive*: $x \in y \in M \implies x \in M$.

Countable transitive model (ctm) of ZF

 $\langle M, E \rangle \models ZF$ where

- *M* is standard: $E := \in \upharpoonright M$.
- *M* is countable, and *transitive*: $x \in y \in M \implies x \in M$.

Note. If $\langle N, R \rangle \models ZF$ with *R* well-founded, then there exists a ctm *M* of *ZF*.

Countable transitive model (ctm) of ZF

 $\langle M, E \rangle \models ZF$ where

- *M* is standard: $E := \in \upharpoonright M$.
- *M* is countable, and *transitive*: $x \in y \in M \implies x \in M$.

Note. If $\langle N, R \rangle \models ZF$ with *R* well-founded, then there exists a ctm *M* of *ZF*. It makes sense to compare, for $x, y \in M$:

$$x \subseteq y$$
 and $M \models x \subseteq y$

Countable transitive model (ctm) of ZF

 $\langle M, E \rangle \models ZF$ where

- *M* is standard: $E := \in \upharpoonright M$.
- *M* is countable, and *transitive*: $x \in y \in M \implies x \in M$.

Note. If $\langle N, R \rangle \models ZF$ with *R* well-founded, then there exists a ctm *M* of *ZF*. It makes sense to compare, for $x, y \in M$:

$$x \subseteq y$$
 and $M \models x \subseteq y$

The rhs can be written as a term of type o:

 $\forall z. \ z \in M \longrightarrow (z \in x \longrightarrow z \in y),$ the **relativization** \subseteq^M of \subseteq to M.

Countable transitive model (ctm) of ZF

 $\langle M, E \rangle \models ZF$ where

- *M* is standard: $E := \in \upharpoonright M$.
- *M* is countable, and *transitive*: $x \in y \in M \implies x \in M$.

Note. If $\langle N, R \rangle \models ZF$ with *R* well-founded, then there exists a ctm *M* of *ZF*. It makes sense to compare, for $x, y \in M$:

$$x \subseteq y \iff M \models x \subseteq y$$

The rhs can be written as a term of type o:

 $\forall z. \ z \in M \longrightarrow (z \in x \longrightarrow z \in y),$ the relativization \subseteq^M of \subseteq to M. In this case, we know that \subseteq is absolute for transitive models.

	8	UNC	Universidad Nacional de Córdoba	ä	400 ANOS
--	---	-----	---------------------------------------	---	-------------

Let $\langle \mathbb{P}, \preceq, 1 \rangle \in M$ be a *forcing notion* (a preorder with top). Given an *M*-generic filter $G \subseteq \mathbb{P}$, we can adjoin it to *M* to form the **generic extension** M[G].

Let $\langle \mathbb{P}, \leq, 1 \rangle \in M$ be a *forcing notion* (a preorder with top). Given an *M*-generic filter $G \subseteq \mathbb{P}$, we can adjoin it to *M* to form the **generic extension** M[G]. Every $a \in M[G]$ is coded by some $\dot{a} \in M$ through the function *val*:

$$M[G] := \{ val(G, \dot{a}) : \dot{a} \in M \}$$

Fundamentally, **truth** in M[G] is coded in M by the function *forces*.

Let $\langle \mathbb{P}, \leq, 1 \rangle \in M$ be a *forcing notion* (a preorder with top). Given an *M*-generic filter $G \subseteq \mathbb{P}$, we can adjoin it to *M* to form the **generic extension** M[G]. Every $a \in M[G]$ is coded by some $\dot{a} \in M$ through the function *val*:

$$M[G] := \{ val(G, \dot{a}) : \dot{a} \in M \}$$

Fundamentally, **truth** in M[G] is coded in M by the function *forces*.

Theorem ([Cohen, 1963])

There exists a formula-transformer forces such that for every φ , *M*-generic *G*, and $\dot{a} \in M$,

$$M[G], [val(G, \dot{a})] \models \varphi \quad \Longleftrightarrow \quad \exists p \in G. \ M, [p, \preceq, \mathbb{P}, \dot{a}] \models forces(\varphi).$$

Let $\langle \mathbb{P}, \leq, 1 \rangle \in M$ be a *forcing notion* (a preorder with top). Given an *M*-generic filter $G \subseteq \mathbb{P}$, we can adjoin it to *M* to form the **generic extension** M[G]. Every $a \in M[G]$ is coded by some $\dot{a} \in M$ through the function *val*:

$$M[G] := \{ val(G, \dot{a}) : \dot{a} \in M \}$$

Fundamentally, **truth** in M[G] is coded in M by the function *forces*.

Theorem ([Cohen, 1963])

There exists a formula-transformer forces such that for every φ , *M*-generic *G*, and $\dot{a} \in M$,

$$M[G], [val(G,\dot{a})] \models \varphi \iff \exists p \in G. \ M, [p, \preceq, \mathbb{P}, \dot{a}] \models forces(\varphi).$$

 $\searrow p \Vdash_{\mathbb{P}, \prec}^{M} \varphi(\dot{a}) \checkmark$

1 Countability ensures that generics exist (by Rasiowa-Sikorski Lemma).

- Countability ensures that generics exist (by Rasiowa-Sikorski Lemma).
- 2 Absoluteness provides seamless treatment of many concepts. α is an ordinal $\iff M \models \alpha$ is an ordinal $\iff M[G] \models \alpha$ is an ordinal

- Countability ensures that generics exist (by Rasiowa-Sikorski Lemma).
- 2 Absoluteness provides seamless treatment of many concepts. α is an ordinal $\iff M \models \alpha$ is an ordinal $\iff M[G] \models \alpha$ is an ordinal
- **3** Both M and M[G] are standard (two-valued) models.

- Countability ensures that generics exist (by Rasiowa-Sikorski Lemma).
- 2 Absoluteness provides seamless treatment of many concepts. α is an ordinal $\iff M \models \alpha$ is an ordinal $\iff M[G] \models \alpha$ is an ordinal
- **3** Both M and M[G] are standard (two-valued) models.
- 4 Ctms are used in an important fraction of the literature.

By choosing $\langle \mathbb{P}, \leq, \mathbb{1} \rangle$ appropriately one can tune the first order properties of M[G] (for any generic G).

By choosing $\langle \mathbb{P}, \leq, 1 \rangle$ appropriately one can tune the first order properties of M[G] (for any generic G).

Theorem ([Cohen, 1963])

If \mathbb{P} is the set of finite partial binary functions with domain included in \aleph_2^M , M[G] satisfies the negation of the **Continuum Hypothesis** (CH):

 $M[G] \models 2^{\aleph_0} > \aleph_1.$

By choosing $\langle \mathbb{P}, \leq, 1 \rangle$ appropriately one can tune the first order properties of M[G] (for any generic G).

Theorem ([Cohen, 1963])

If \mathbb{P} is the set of finite partial binary functions with domain included in \aleph_2^M , M[G] satisfies the negation of the **Continuum Hypothesis** (CH):

 $M[G] \models 2^{\aleph_0} > \aleph_1.$

Formalizing the independence of *CH* from the axioms of *ZFC* using ctms is one of the main goals of our project.

Other approaches to set theory and forcing

■ Lean: Full formalization of the Boolean-valued approach to forcing and the independence of *CH* [Han and van Doorn, 2020].

Other approaches to set theory and forcing

- Lean: Full formalization of the Boolean-valued approach to forcing and the independence of *CH* [Han and van Doorn, 2020].
- Set theory over Isabelle/HOL:
 - HOLZF [Obua, 2006]
 - ZFC_in_HOL [Paulson, 2019]

Other approaches to set theory and forcing

- Lean: Full formalization of the Boolean-valued approach to forcing and the independence of CH [Han and van Doorn, 2020].
- Set theory over Isabelle/HOL:
 - HOLZF [Obua, 2006]
 - ZFC_in_HOL [Paulson, 2019]

A word on consistency strength

Isabelle/ZF + ctm HOLZF, ZFC_in_HOL Lean (CiC) (far) less than ZF + one inaccessible. approximately ZF + one inaccessible. ZF + ω inaccessibles [Carneiro, 2019].

We adapted the ZF-Constructible library [Paulson, 2003] to obtain absoluteness results for nonempty transitive classes (→ Isabelle2020).

- We adapted the ZF-Constructible library [Paulson, 2003] to obtain absoluteness results for nonempty transitive classes (→ Isabelle2020).
- 2 We formalized the formula transformer *forces* and hence the forcing relation I⊢, and proved the Fundamental Theorems.

- We adapted the ZF-Constructible library [Paulson, 2003] to obtain absoluteness results for nonempty transitive classes (→ Isabelle2020).
- 2 We formalized the formula transformer *forces* and hence the forcing relation *I*⊢, and proved the Fundamental Theorems.
- 3 We showed that generic extensions of ctms of ZF are also ctms of ZF (respectively, adding AC).

- We adapted the ZF-Constructible library [Paulson, 2003] to obtain absoluteness results for nonempty transitive classes (→ Isabelle2020).
- 2 We formalized the formula transformer *forces* and hence the forcing relation *I*⊢, and proved the Fundamental Theorems.
- 3 We showed that generic extensions of ctms of *ZF* are also ctms of *ZF* (respectively, adding *AC*).
- We provided the forcing notion that adds a Cohen real, therefore proving the existence of a nontrivial extension.

1 We adapted ZF-Constructible to obtain sharper absoluteness results.

This library originally contains a major development of relativization and absoluteness for *classes* $C :: i \Rightarrow o$, including the definition of the set formula :: i of internal formulas and model theoretic satisfaction.

1 We adapted ZF-Constructible to obtain sharper absoluteness results.

This library originally contains a major development of relativization and absoluteness for *classes* $C :: i \Rightarrow o$, including the definition of the set formula :: i of internal formulas and model theoretic satisfaction.

Relativization and synthesis discipline

l
$$p=\{x,y\}::\mathtt{i}$$

(original term).

1 We adapted ZF-Constructible to obtain sharper absoluteness results.

This library originally contains a major development of relativization and absoluteness for *classes* $C :: i \Rightarrow o$, including the definition of the set formula :: i of internal formulas and model theoretic satisfaction.

Relativization and synthesis discipline

| $p = \{x, y\}$:: i || upair(C, x, y, p) :: o (original term).

(relativization, fully relational).

1 We adapted ZF-Constructible to obtain sharper absoluteness results.

This library originally contains a major development of relativization and absoluteness for *classes* $C :: i \Rightarrow o$, including the definition of the set formula :: i of internal formulas and model theoretic satisfaction.

Relativization and synthesis discipline

|
$$p = \{x, y\} :::$$
 i
|| upair $(C, x, y, p) ::$ o
||| upair_fm $(0, 1, 2) ::$ i

(original term).

(relativization, fully relational).

(synthesized member of formula).

1 We adapted ZF-Constructible to obtain sharper absoluteness results.

This library originally contains a major development of relativization and absoluteness for *classes* $C :: i \Rightarrow o$, including the definition of the set formula :: i of internal formulas and model theoretic satisfaction.

Relativization and synthesis discipline

 $\begin{array}{ll} p = \{x,y\} :: i & (original term). \\ \mbox{II upair}(C,x,y,p) :: o & (relativization, fully relational). \\ \mbox{III upair}_fm(0,1,2) :: i & (synthesized member of formula). \end{array}$

Around 40 absoluteness/closure lemmas now hold using weaker hypotheses on the class C (most of them, just that C is transitive and nonempty).

2 We formalized the formula transformer *forces* and hence the forcing relation *I*⊢, and proved the Fundamental Theorems.

2 We formalized the formula transformer *forces* and hence the forcing relation *I*⊢, and proved the Fundamental Theorems.

forces is defined by recursion on formulas

This is the main reason we work with the set of internalized formulas, and that we require legit first-order expressions for the axiom schemes (Separation and Replacement).

The base cases $forces(x \in y)$ and forces(x = y) are defined by internal well-founded recursion.

2 We formalized the formula transformer *forces* and hence the forcing relation *I*⊢, and proved the Fundamental Theorems.

forces is defined by recursion on formulas

This is the main reason we work with the set of internalized formulas, and that we require legit first-order expressions for the axiom schemes (Separation and Replacement).

The base cases $forces(x \in y)$ and forces(x = y) are defined by internal well-founded recursion.

We enhanced the recursion results of Isabelle/ZF as well as the relevant preservation results in ZF-Constructible, thus showing that forcing is absolute for atomic formulas.

8	UNC	Universidad Nacional de Córdoba		400 AÑOS
---	-----	---------------------------------------	--	-------------

3 For any ctm *M* of *ZF* and *M*-generic *G*, $M[G] \models ZF$ (respectively, adding *AC*).

3 For any ctm *M* of *ZF* and *M*-generic *G*, $M[G] \models ZF$ (respectively, adding *AC*).

Actually, the modularity of the theory of forcing allowed us to do this before we write down the definition of *forces*.

3 For any ctm *M* of *ZF* and *M*-generic *G*, $M[G] \models ZF$ (respectively, adding *AC*).

Actually, the modularity of the theory of forcing allowed us to do this before we write down the definition of *forces*.

We may compare some of the code with the actual math [Kunen, 2011].

For Power Set (similarly to Union above), it is sufficient to prove that whenever $a \in M[G]$, there is a $b \in M[G]$ such that $\mathcal{P}(a) \cap M[G] \subseteq b$. Fix $\tau \in M^{\mathbb{P}}$ such that $\tau_G = a$. Let $Q = (\mathcal{P}(\operatorname{dom}(\tau) \times \mathbb{P}))^M$. This is the set of all names $\vartheta \in M^{\mathcal{P}}$ such that $\operatorname{dom}(\vartheta) \subseteq \operatorname{dom}(\tau)$. Let $\pi = Q \times \{1\}$ and let $b = \pi_G =$ $\{\vartheta_G : \vartheta \in Q\}$. Now, consider any $c \in \mathcal{P}(a) \cap M[G]$; we need to show that $c \in b$.

For Power Set (similarly to Union above), it is sufficient to prove that whenever $a \in M[G]$, there is a $b \in M[G]$ such that $\mathcal{P}(a) \cap M[G] \subseteq b$. Fix $\tau \in M^{\mathbb{P}}$ such that $\tau_G = a$. Let $Q = (\mathcal{P}(\operatorname{dom}(\tau) \times \mathbb{P}))^M$. This is the set of all names $\vartheta \in M^{\mathcal{P}}$ such that $\operatorname{dom}(\vartheta) \subseteq \operatorname{dom}(\tau)$. Let $\pi = Q \times \{1\}$ and let $b = \pi_G =$ $\{\vartheta_G : \vartheta \in Q\}$. Now, consider any $c \in \mathcal{P}(a) \cap M[G]$; we need to show that $c \in b$.

For Power Set (similarly to Union above), it is sufficient to prove that whenever $a \in M[G]$, there is a $b \in M[G]$ such that $\mathcal{P}(a) \cap M[G] \subseteq b$. Fix $\tau \in M^{\mathcal{P}}$ such that $\tau_G = a$. Let $Q = (\mathcal{P}(\operatorname{dom}(\tau) \times \mathbb{P}))^M$. This is the set of all names $\vartheta \in M^{\mathcal{P}}$ such that $\operatorname{dom}(\vartheta) \subseteq \operatorname{dom}(\tau)$. Let $\pi = Q \times \{1\}$ and let $b = \pi_G =$ $\{\vartheta_G : \vartheta \in Q\}$. Now, consider any $c \in \mathcal{P}(a) \cap M[G]$; we need to show that $c \in b$.

lemma Pow_inter_MG:	1
assumes	
"a∈M[G]"	
shows	
"Pow(a) ∩ M[G] ∈ M[G]"	
proof -	
from assms obtain τ where " $\tau \in M$ " "val(G, τ) = a"	
using GenExtD by auto	
let $?Q="Pow(domain(\tau) \times P) \cap M"$	
from <τ∈M>	
have "domain(τ) \times P \in M" "domain(τ) \in M" [2 lines]	
then	
have "?Q < M" [17 lines]	
let ? π ="?Q×{one}"	
let ?b="val(G,?\")"	
from Q∈M	
have "?π∈M" [2 lines]	
then	
have "?b ∈ M[G]"	
using GenExtI by simp	
have "Pow(a) \cap M[G] \subseteq ?b"	
proof	
fix c	
assume " $c \in Pow(a) \cap M[G]$ "	
then obtain χ where "c \in M[G]" " $\chi \in$ M" "val(G, χ) = c"	
using GenExtD by auto	UNC Universidad
let $?\vartheta = \{\sigma p \in \text{domain}(\tau) \times P : \text{snd}(\sigma p) \vdash (\text{Member}(0,1)) [fst(\sigma p), \chi] \}$ "	da Córdoba
have "arity/forces/Member(0 1))) - 6" [1 lines]	3

E. Gunther, M. Pagano, PST (UNC)

400

For Power Set (similarly to Union above), it is sufficient to prove that whenever $a \in M[G]$, there is a $b \in M[G]$ such that $\mathcal{P}(a) \cap M[G] \subseteq b$. Fix $\tau \in M^{\mathbb{P}}$ such that $\tau_G = a$. Let $Q = (\mathcal{P}(\operatorname{dom}(\tau) \times \mathbb{P}))^M$. This is the set of all names $\vartheta \in M^{\mathcal{P}}$ such that $\operatorname{dom}(\vartheta) \subseteq \operatorname{dom}(\tau)$. Let $\pi = Q \times \{1\}$ and let $b = \pi_G =$ $\{\vartheta_G : \vartheta \in Q\}$. Now, consider any $c \in \mathcal{P}(a) \cap M[G]$; we need to show that $c \in b$.

For Power Set (similarly to Union above), it is sufficient to prove that whenever $a \in M[G]$, there is a $b \in M[G]$ such that $\mathcal{P}(a) \cap M[G] \subseteq b$. Fix $\tau \in M^{\mathbb{P}}$ such that $\tau_G = a$. Let $Q = (\mathcal{P}(\operatorname{dom}(\tau) \times \mathbb{P}))^M$. This is the set of all names $\vartheta \in M^{\mathcal{P}}$ such that $\operatorname{dom}(\vartheta) \subseteq \operatorname{dom}(\tau)$. Let $\pi = Q \times \{1\}$ and let $b = \pi_G =$ $\{\vartheta_G : \vartheta \in Q\}$. Now, consider any $c \in \mathcal{P}(a) \cap M[G]$; we need to show that $c \in b$.

For Power Set (similarly to Union above), it is sufficient to prove that whenever $a \in M[G]$, there is a $b \in M[G]$ such that $\mathcal{P}(a) \cap M[G] \subseteq b$. Fix $\tau \in M^{\mathbb{P}}$ such that $\tau_G = a$. Let $Q = (\mathcal{P}(\operatorname{dom}(\tau) \times \mathbb{P}))^M$. This is the set of all names $\vartheta \in M^{\mathcal{P}}$ such that $\operatorname{dom}(\vartheta) \subseteq \operatorname{dom}(\tau)$. Let $\pi = Q \times \{1\}$ and let $b = \pi_G =$ $\{\vartheta_G : \vartheta \in Q\}$. Now, consider any $c \in \mathcal{P}(a) \cap M[G]$; we need to show that $c \in b$.

For Power Set (similarly to Union above), it is sufficient to prove that whenever $a \in M[G]$, there is a $b \in M[G]$ such that $\mathcal{P}(a) \cap M[G] \subseteq b$. Fix $\tau \in M^{\mathbb{P}}$ such that $\tau_G = a$. Let $Q = (\mathcal{P}(\operatorname{dom}(\tau) \times \mathbb{P}))^M$. This is the set of all names $\vartheta \in M^{\mathcal{P}}$ such that $\operatorname{dom}(\vartheta) \subseteq \operatorname{dom}(\tau)$. Let $\pi = Q \times \{1\}$ and let $b = \pi_G =$ $\{\vartheta_G : \vartheta \in Q\}$. Now, consider any $c \in \mathcal{P}(a) \cap M[G]$; we need to show that $c \in b$.

 $\{\vartheta_G : \vartheta \in Q\}. \text{ Now, consider any } c \in \mathcal{P}(a) \cap M[G]; \text{ we need to show that } c \in b.$ Fix $\varkappa \in M^{\mathbb{P}}$ such that $\varkappa_G = c$, and let $\vartheta = \{\langle \sigma, p \rangle : \sigma \in \operatorname{dom}(\tau) \land p \Vdash \sigma \in \varkappa\}; \vartheta \in M$ by the Definability Lemma. Since $\vartheta \in Q$, we are done if we can show that $\vartheta_G = c$. $\vartheta_G \subseteq c$ holds because $\vartheta_G = \{\sigma_G : \exists p \in G \ p \Vdash \sigma \in \varkappa\}$ and all these σ_G lie in $\varkappa_G = c$ by the definition of \Vdash . To prove $c \subseteq \vartheta_G$: since $c \subseteq a = \tau_G$, every element of c is of the form σ_G for some $\sigma \in \operatorname{dom}(\tau)$. Since $\sigma_G \in c = \varkappa_G$, apply the Truth Lemma and fix $p \in G$ such that $p \Vdash \sigma \in \varkappa$; then $\langle \sigma, p \rangle \in \vartheta$, so $\sigma_G \in \vartheta_G$.

 $\{\vartheta_G : \vartheta \in Q\}$. Now, consider any $c \in \mathcal{P}(a) \cap M[G]$; we need to show that $c \in b$. Fix $\varkappa \in M^{\mathbb{P}}$ such that $\varkappa_G = c$, and let $\vartheta = \{\langle \sigma, p \rangle : \sigma \in \operatorname{dom}(\tau) \land p \Vdash \sigma \in \varkappa\}$; $\vartheta \in M$ by the Definability Lemma. Since $\vartheta \in Q$, we are done if we can show that $\vartheta_G = c$. $\vartheta_G \subseteq c$ holds because $\vartheta_G = \{\sigma_G : \exists p \in G \ p \Vdash \sigma \in \varkappa\}$ and all these σ_G lie in $\varkappa_G = c$ by the definition of \Vdash . To prove $c \subseteq \vartheta_G$: since $c \subseteq a = \tau_G$, every element of c is of the form σ_G for some $\sigma \in \operatorname{dom}(\tau)$. Since $\sigma_G \in c = \varkappa_G$, apply the Truth Lemma and fix $p \in G$ such that $p \Vdash \sigma \in \varkappa$; then $\langle \sigma, p \rangle \in \vartheta$, so $\sigma_G \in \vartheta_G$.

 $\{\vartheta_G : \vartheta \in Q\}$. Now, consider any $c \in \mathcal{P}(a) \cap M[G]$; we need to show that $c \in b$. Fix $\varkappa \in M^{\mathbb{P}}$ such that $\varkappa_G = c$, and let $\vartheta = \{\langle \sigma, p \rangle : \sigma \in \operatorname{dom}(\tau) \land p \Vdash \sigma \in \varkappa\}$; $\vartheta \in M$ by the Definability Lemma. Since $\vartheta \in Q$, we are done if we can show that $\vartheta_G = c$. $\vartheta_G \subseteq c$ holds because $\vartheta_G = \{\sigma_G : \exists p \in G \ p \Vdash \sigma \in \varkappa\}$ and all these σ_G lie in $\varkappa_G = c$ by the definition of \Vdash . To prove $c \subseteq \vartheta_G$: since $c \subseteq a = \tau_G$, every element of c is of the form σ_G for some $\sigma \in \operatorname{dom}(\tau)$. Since $\sigma_G \in c = \varkappa_G$, apply the Truth Lemma and fix $p \in G$ such that $p \Vdash \sigma \in \varkappa$; then $\langle \sigma, p \rangle \in \vartheta$, so $\sigma_G \in \vartheta_G$.

 $\{\vartheta_G : \vartheta \in Q\}$. Now, consider any $c \in \mathcal{P}(a) \cap M[G]$; we need to show that $c \in b$. Fix $\varkappa \in M^{\mathbb{P}}$ such that $\varkappa_G = c$, and let $\vartheta = \{\langle \sigma, p \rangle : \sigma \in \operatorname{dom}(\tau) \land p \Vdash \sigma \in \varkappa\}$; $\vartheta \in M$ by the Definability Lemma. Since $\vartheta \in Q$, we are done if we can show that $\vartheta_G = c$. $\vartheta_G \subseteq c$ holds because $\vartheta_G = \{\sigma_G : \exists p \in G \ p \Vdash \sigma \in \varkappa\}$ and all these σ_G lie in $\varkappa_G = c$ by the definition of \Vdash . To prove $c \subseteq \vartheta_G$: since $c \subseteq a = \tau_G$, every element of c is of the form σ_G for some $\sigma \in \operatorname{dom}(\tau)$. Since $\sigma_G \in c = \varkappa_G$, apply the Truth Lemma and fix $p \in G$ such that $p \Vdash \sigma \in \varkappa$; then $\langle \sigma, p \rangle \in \vartheta$, so $\sigma_G \in \vartheta_G$.

 $\{\vartheta_G : \vartheta \in Q\}. \text{ Now, consider any } c \in \mathcal{P}(a) \cap M[G]; \text{ we need to show that } c \in b. \\ \text{Fix } \varkappa \in M^{\mathbb{P}} \text{ such that } \varkappa_G = c, \text{ and let } \vartheta = \{\langle \sigma, p \rangle : \sigma \in \text{dom}(\tau) \land p \Vdash \sigma \in \varkappa\}; \\ \vartheta \in M \text{ by the Definability Lemma. Since } \vartheta \in Q, \text{ we are done if we can show that } \vartheta_G = c. \ \vartheta_G \subseteq c \text{ holds because } \vartheta_G = \{\sigma_G : \exists p \in G \ p \Vdash \sigma \in \varkappa\} \text{ and all these } \sigma_G \text{ lie in } \varkappa_G = c \text{ by the definition } \sigma \Vdash . \\ \text{To prove } c \subseteq \vartheta_G: \text{ since } c \in a = \tau_G, \text{ every element of } c \text{ is of the form } \sigma_G \text{ for some } \sigma \in \text{dom}(\tau). \\ \text{Since } \sigma_G \in c = \varkappa_G, \text{ apply the Truth Lemma and fix } p \in G \text{ such that } p \Vdash \sigma \in \varkappa; \\ \text{then } \langle \sigma, p \rangle \in \vartheta, \text{ so } \sigma_G \in \vartheta_G. \\ \end{array}$

 $\{\vartheta_G : \vartheta \in Q\}$. Now, consider any $c \in \mathcal{P}(a) \cap M[G]$; we need to show that $c \in b$. Fix $\varkappa \in M^{\mathbb{P}}$ such that $\varkappa_G = c$, and let $\vartheta = \{\langle \sigma, p \rangle : \sigma \in \operatorname{dom}(\tau) \land p \Vdash \sigma \in \varkappa\}$; $\vartheta \in M$ by the Definability Lemma. Since $\vartheta \in Q$, we are done if we can show that $\vartheta_G = c$. $\vartheta_G \subseteq c$ holds because $\vartheta_G = \{\sigma_G : \exists p \in G \ p \Vdash \sigma \in \varkappa\}$ and all these σ_G lie in $\varkappa_G = c$ by the definition of \Vdash . To prove $c \subseteq \vartheta_G$: since $c \subseteq a = \tau_G$, every element of c is of the form σ_G for some $\sigma \in \operatorname{dom}(\tau)$. Since $\sigma_G \in c = \varkappa_G$, apply the Truth Lemma and fix $p \in G$ such that $p \Vdash \sigma \in \varkappa$; then $\langle \sigma, p \rangle \in \vartheta$, so $\sigma_G \in \vartheta_G$.

Formalizing math

- Cofinality, Kőnig's Theorem, Shanin's ∆-system Lemma.
- Forcing notion for adding κ Cohen reals.
- Theorems on preservation of cardinals.

Formalizing math

- Cofinality, Kőnig's Theorem, Shanin's ∆-system Lemma.
- Forcing notion for adding κ Cohen reals.
- Theorems on preservation of cardinals.

Technical aids

- Automatic relativization and proof of absoluteness of concepts.
- "Relative functions" (e.g., \mathscr{P}^M , $|\cdot|^M$, cf^M).

Thank you!

References

- M. CARNEIRO, "The Type Theory of Lean", Master's thesis, Carnegie Mellon University (2019).
- P. COHEN, The independence of the continuum hypothesis, *Proc. Nat. Acad. Sci. U.S.A.* **50**: 1143–1148 (1963).
- J.M. HAN, F. VAN DOORN, A formal proof of the independence of the continuum hypothesis, in: J. Blanchette, C. Hritcu (Eds.), Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, ACM (2020).
- K. KUNEN, "Set Theory", Studies in Logic, College Publications (2011), second edition. Revised edition, 2013.
- S. OBUA, Partizan games in Isabelle/HOLZF, in: K. Barkaoui, A. Cavalcanti, A. Cerone (Eds.), Theoretical Aspects of Computing - ICTAC 2006, Third International Colloquium, Tunis, Tunisia, November 20-24, 2006, Proceedings, Lecture Notes in Computer Science **4281**, Springer: 272–286 (2006).
- L.C. PAULSON, The relative consistency of the axiom of choice mechanized using Isabelle/ZF, LMS Journal of Computation and Mathematics 6: 198–248 (2003).
- L.C. PAULSON, Zermelo Fraenkel set theory in higher-order logic, *Archive of Formal Proofs* (2019). http://isa-afp.org/entries/ZFC_in_HOL.html, Formal proof development.
- L.C. PAULSON, K. GRABCZEWSKI, Mechanizing set theory, J. Autom. Reasoning 17: 291-323 (1996).
- M. WENZEL, Isar A generic interpretative approach to readable formal proof documents, in: Y. Bertot,
 G. Dowek, A. Hirschowitz, C. Paulin-Mohring, L. Théry (Eds.), Theorem Proving in Higher Order Logics,
 12th International Conference, TPHOLs'99, Nice, France, September, 1999, Proceedings, Lecture Notes in Computer Science 1690, Springer: 167–184 (1999).

Extra: Locale structure involving set models

forcing_notion	=	preorder ${\mathbb P}$ with top.
$M_{ZF_{trans}}$	=	set model M of the ZF axioms + M transitive
M_ctm	=	$M_ZF_trans + M$ countable
forcing_data	=	$\texttt{M_ctm + forcing_notion} \ \mathbb{P} \in M$
separative_notion	=	forcing_notion + \mathbb{P} separative
M_ctm_separative	=	<pre>forcing_data + separative_notion</pre>
G_generic	=	forcing_data + G is M -generic

We only show the second inclusion $c \subseteq \vartheta_G = val(G, \vartheta)$ (the first one is proved in the course of the 24 folded lines).

 $\{\vartheta_G : \vartheta \in Q\}$. Now, consider any $c \in \mathcal{P}(a) \cap M[G]$; we need to show that $c \in b$. Fix $\varkappa \in M^{\mathbb{P}}$ such that $\varkappa_G = c$, and let $\vartheta = \{\langle \sigma, p \rangle : \sigma \in \operatorname{dom}(\tau) \land p \Vdash \sigma \in \varkappa\}$; $\vartheta \in M$ by the Definability Lemma. Since $\vartheta \in Q$, we are done if we can show that $\vartheta_G = c$. $\vartheta_G \subseteq c$ holds because $\vartheta_G = \{\sigma_G : \exists p \in G \ p \Vdash \sigma \in \varkappa\}$ and all these σ_G lie in $\varkappa_G = c$ by the definition of \Vdash . To prove $c \subseteq \vartheta_G$: since $c \subseteq a = \tau_G$, every element of c is of the form σ_G for some $\sigma \in \operatorname{dom}(\tau)$. Since $\sigma_G \in c = \varkappa_G$, apply the Truth Lemma and fix $p \in G$ such that $p \Vdash \sigma \in \varkappa$; then $\langle \sigma, p \rangle \in \vartheta$, so $\sigma_G \in \vartheta_G$.

 $\{\vartheta_G : \vartheta \in Q\}. \text{ Now, consider any } c \in \mathcal{P}(a) \cap M[G]; \text{ we need to show that } c \in b. \\ \text{Fix } \varkappa \in M^{\mathbb{P}} \text{ such that } \varkappa_G = c, \text{ and let } \vartheta = \{\langle \sigma, p \rangle : \sigma \in \operatorname{dom}(\tau) \land p \Vdash \sigma \in \varkappa\}; \\ \vartheta \in M \text{ by the Definability Lemma. Since } \vartheta \in Q, \text{ we are done if we can show that } \vartheta_G = c. \ \vartheta_G \subseteq c \text{ holds because } \vartheta_G = \{\sigma_G : \exists p \in G \ p \Vdash \sigma \in \varkappa\} \text{ and all these } \sigma_G \text{ lie in } \varkappa_G = c \text{ by the definition } \sigma \Vdash . \\ \text{To prove } c \subseteq \vartheta_G: \text{ since } c \subseteq a = \tau_G, \text{ every element of } c \text{ is of the form } \sigma_G \text{ for some } \sigma \in \operatorname{dom}(\tau). \\ \text{Since } \sigma_G \in c = \varkappa_G, \text{ apply the Truth Lemma and fix } p \in G \text{ such that } p \Vdash \sigma \in \varkappa; \\ \text{then } \langle \sigma, p \rangle \in \vartheta, \text{ so } \sigma_G \in \vartheta_G. \\ \end{array}$

 $\{\vartheta_G : \vartheta \in Q\}. \text{ Now, consider any } c \in \mathcal{P}(a) \cap M[G]; \text{ we need to show that } c \in b. \\ \text{Fix } \varkappa \in M^{\mathbb{P}} \text{ such that } \varkappa_G = c, \text{ and let } \vartheta = \{\langle \sigma, p \rangle : \sigma \in \operatorname{dom}(\tau) \land p \Vdash \sigma \in \varkappa\}; \\ \vartheta \in M \text{ by the Definability Lemma. Since } \vartheta \in Q, \text{ we are done if we can show that } \vartheta_G = c. \ \vartheta_G \subseteq c \text{ holds because } \vartheta_G = \{\sigma_G : \exists p \in G \ p \Vdash \sigma \in \varkappa\} \text{ and all these } \sigma_G \text{ lie in } \varkappa_G = c \text{ by the definition of } \Vdash. \text{ To prove } c \subseteq \vartheta_G: \text{ since } c \subseteq a = \tau_G, \text{ every element of } c \text{ is of the form } \sigma_G \text{ for some } \sigma \in \operatorname{dom}(\tau). \text{ Since } \sigma_G \in c = \varkappa_G, \text{ apply the Truth Lemma and fix } p \in G \text{ such that } p \Vdash \sigma \in \varkappa; \text{ then } \langle \sigma, p \rangle \in \vartheta, \text{ so } \sigma_G \in \vartheta_G. \\ \end{cases}$

 $\{\vartheta_G : \vartheta \in Q\}. \text{ Now, consider any } c \in \mathcal{P}(a) \cap M[G]; \text{ we need to show that } c \in b. \\ \text{Fix } \varkappa \in M^{\mathbb{P}} \text{ such that } \varkappa_G = c, \text{ and let } \vartheta = \{\langle \sigma, p \rangle : \sigma \in \operatorname{dom}(\tau) \land p \Vdash \sigma \in \varkappa\}; \\ \vartheta \in M \text{ by the Definability Lemma. Since } \vartheta \in Q, \text{ we are done if we can show that } \vartheta_G = c. \ \vartheta_G \subseteq c \text{ holds because } \vartheta_G = \{\sigma_G : \exists p \in G \ p \Vdash \sigma \in \varkappa\} \text{ and all these } \sigma_G \text{ lie in } \varkappa_G = c \text{ by the definition } \sigma \Vdash \cdot \text{ To prove } c \subseteq \vartheta_G: \text{ since } c \subseteq a = \tau_G, \text{ every element of } c \text{ is of the form } \sigma_G \text{ for some } \sigma \in \operatorname{dom}(\tau). \text{ Since } \sigma_G \in c = \varkappa_G, \text{ apply the Truth Lemma and fix } p \in G \text{ such that } p \Vdash \sigma \in \varkappa; \text{ then } \langle \sigma, p \rangle \in \vartheta, \text{ so } \sigma_G \in \vartheta_G. \end{cases}$

 $\{\vartheta_G : \vartheta \in Q\}. \text{ Now, consider any } c \in \mathcal{P}(a) \cap M[G]; \text{ we need to show that } c \in b. \\ \text{Fix } \varkappa \in M^{\mathbb{P}} \text{ such that } \varkappa_G = c, \text{ and let } \vartheta = \{\langle \sigma, p \rangle : \sigma \in \operatorname{dom}(\tau) \land p \Vdash \sigma \in \varkappa\}; \\ \vartheta \in M \text{ by the Definability Lemma. Since } \vartheta \in Q, \text{ we are done if we can show that } \vartheta_G = c. \ \vartheta_G \subseteq c \text{ holds because } \vartheta_G = \{\sigma_G : \exists p \in G \ p \Vdash \sigma \in \varkappa\} \text{ and all these } \sigma_G \text{ lie in } \varkappa_G = c \text{ by the definition of } \Vdash. \text{ To prove } c \subseteq \vartheta_G: \text{ since } c \subseteq a = \tau_G, \text{ every element of } c \text{ is of the form } \sigma_G \text{ for some } \sigma \in \operatorname{dom}(\tau). \text{ Since } \sigma_G \in c = \varkappa_G, \text{ apply the Truth Lemma and fix } p \in G \text{ such that } p \Vdash \sigma \in \varkappa; \text{ then } \langle \sigma, p \rangle \in \vartheta, \text{ so } \sigma_G \in \vartheta_G. \\ \end{cases}$

 $\{\vartheta_G : \vartheta \in Q\}. \text{ Now, consider any } c \in \mathcal{P}(a) \cap M[G]; \text{ we need to show that } c \in b. \\ \text{Fix } \varkappa \in M^{\mathbb{P}} \text{ such that } \varkappa_G = c, \text{ and let } \vartheta = \{\langle \sigma, p \rangle : \sigma \in \text{dom}(\tau) \land p \Vdash \sigma \in \varkappa\}; \\ \vartheta \in M \text{ by the Definability Lemma. Since } \vartheta \in Q, \text{ we are done if we can show that } \vartheta_G = c. \ \vartheta_G \subseteq c \text{ holds because } \vartheta_G = \{\sigma_G : \exists p \in G \ p \Vdash \sigma \in \varkappa\} \text{ and all these } \sigma_G \text{ lie in } \varkappa_G = c \text{ by the definition of } \Vdash. \text{ To prove } c \subseteq \vartheta_G: \text{ since } c \subseteq a = \tau_G, \text{ every element of } c \text{ is of the form } \sigma_G \text{ for some } \sigma \in \text{dom}(\tau). \text{ Since } \sigma_G \in c = \varkappa_G, \text{ apply the Truth Lemma and fix } p \in G \text{ such that } p \Vdash \sigma \in \varkappa; \text{ then } \langle \sigma, p \rangle \in \vartheta, \text{ so } \sigma_G \in \vartheta_G. \\ \end{cases}$

moreover
note $\langle \chi \in M \rangle$
ultimately
obtain p where " $p \in G$ " "($p \vdash Member(0,1) [\sigma,\chi]$)"
using generic truth_lemma[of "Member(0,1)" "G" "[σ,χ]"] nat_simp_union
by auto
moreover from <p∈g></p∈g>
have "p∈P"
using generic by blast
ultimately
have $\neg \sigma, p \ge ?\vartheta$
using $\langle \sigma \in \text{domain}(\tau) \rangle$ by simp
with $\langle val(G,\sigma) = x \rangle \langle p \in G \rangle$
show "x∈val(G,?ϑ)"
using val of elem [of "?ϑ"] by auto
qed
with $\langle val(G,?\vartheta) \in ?b \rangle$
<pre>show "c∈?b" by simp</pre>
qed
then
have "Pow(a) \cap M[G] = {x \in ?b . x \subseteq a \land x \in M[G]}"
by auto
also from <a∈m[g]></a∈m[g]>
have " = { $x \in \mathbb{P}$. (M[G], [x,a] \models subset fm(0,1)) $\land x \in M[G]$ }"
using Transset MG by force
also
have " = { $x \in ?b$. (M[G], [x,a] \models subset fm(0,1))} \cap M[G]"
has a sub-

 $\{\vartheta_G : \vartheta \in Q\}$. Now, consider any $c \in \mathcal{P}(a) \cap M[G]$; we need to show that $c \in b$. Fix $\varkappa \in M^{\mathbb{P}}$ such that $\varkappa_G = c$, and let $\vartheta = \{\langle \sigma, p \rangle : \sigma \in \operatorname{dom}(\tau) \land p \Vdash \sigma \in \varkappa\}$; $\vartheta \in M$ by the Definability Lemma. Since $\vartheta \in Q$, we are done if we can show that $\vartheta_G = c$. $\vartheta_G \subseteq c$ holds because $\vartheta_G = \{\sigma_G : \exists p \in G \ p \Vdash \sigma \in \varkappa\}$ and all these σ_G lie in $\varkappa_G = c$ by the definition of \Vdash . To prove $c \subseteq \vartheta_G$: since $c \subseteq a = \tau_G$, every element of c is of the form σ_G for some $\sigma \in \operatorname{dom}(\tau)$. Since $\sigma_G \in c = \varkappa_G$, apply the Truth Lemma and fix $p \in G$ such that $p \Vdash \sigma \in \varkappa$; then $\langle \sigma, p \rangle \in \vartheta$, so $\sigma_G \in \vartheta_G$.

moreover		
note $\langle \chi \in M \rangle$		
ultimately		
obtain p where " $p \in G$ " "($p \vdash Member(0,1) [\sigma,\chi]$)"		
using generic truth_lemma[of "Member(0,1)" "G" " $[\sigma, \chi]$ "] nat_simp_union		
by auto		
moreover from <p∈g></p∈g>		
have "peP"		
using generic by blast		
ultimately		
have "<♂,p>∈?∂"		
using $\langle \sigma \in \text{domain}(\tau) \rangle$ by simp		
with $\langle val(G,\sigma) = x \rangle \langle p \in G \rangle$		
show "x∈val(G,?ϑ)"		
using val_of_elem [of "?0"] by auto		
qed		
with $\langle val(G, ?\vartheta) \in ?b \rangle$		
show "c∈?b" by simp		
qed		
then		
have "Pow(a) \cap M[G] = {x \in ?b . x \subseteq a \land x \in M[G]}"		
by auto		
also from <a∈m[g]></a∈m[g]>		
have " \ldots = {x \in ?b . (M[G], [x,a] \models subset_fm(0,1)) \land x \in M[G]}"		
using Transset_MG by force		
also	8	UNC
have " = { $x \in ?b$. (M[G], [x,a] \models subset_fm(0,1))} \cap M[G]"	L	

 $\{\vartheta_G : \vartheta \in Q\}$. Now, consider any $c \in \mathcal{P}(a) \cap M[G]$; we need to show that $c \in b$. Fix $\varkappa \in M^{\mathbb{P}}$ such that $\varkappa_G = c$, and let $\vartheta = \{\langle \sigma, p \rangle : \sigma \in \operatorname{dom}(\tau) \land p \Vdash \sigma \in \varkappa\}$; $\vartheta \in M$ by the Definability Lemma. Since $\vartheta \in Q$, we are done if we can show that $\vartheta_G = c$. $\vartheta_G \subseteq c$ holds because $\vartheta_G = \{\sigma_G : \exists p \in G \ p \Vdash \sigma \in \varkappa\}$ and all these σ_G lie in $\varkappa_G = c$ by the definition of \Vdash . To prove $c \subseteq \vartheta_G$: since $c \subseteq a = \tau_G$, every element of c is of the form σ_G for some $\sigma \in \operatorname{dom}(\tau)$. Since $\sigma_G \in c = \varkappa_G$, apply the Truth Lemma and fix $p \in G$ such that $p \Vdash \sigma \in \varkappa$; then $\langle \sigma, p \rangle \in \vartheta$, so $\sigma_G \in \vartheta_G$.

moreover	
note $\langle \chi \in M \rangle$	
ultimately	
obtain p where "p \in G" "(p \vdash Member(0,1) [σ , χ])"	
using generic truth_lemma[of "Member(0,1)" "G" "[σ,χ]"] nat_simp_union	
by auto	
moreover from <pre>vpeG></pre>	
have "p∈P"	
using generic by blast	
ultimately	
have $<\sigma$, p> \in ? ϑ "	
using $\langle \sigma \in \text{domain}(\tau) \rangle$ by simp	
with $\langle val(G,\sigma) = x \rangle \langle p \in G \rangle$	
show "×∈val(G,?0)"	
using val_of_elem [of "?v"] by auto	
qed	
with $\langle val(G,?\vartheta) \in ?b \rangle$	
show "c∈?b" by simp	
deq	
then	
have "Pow(a) \cap M[G] = {x \in ?b . x \subseteq a \land x \in M[G]}"	
by auto	
also from <aem[6]></aem[6]>	
nave $\ldots = \{x \in \mathcal{D} : (M[G], [x,a] \models subset_fm(0,1)) \land x \in M[G]\}^{"}$	
using transset_MG by Torce	
nave \ldots = {x \in rb} . (M[G], [x, a] \models subset_Tm(0, 1))} \cap M[G]"	